Statistical Learning Mechanisms and Oral Language: From Theory to Practice
DOI:
https://doi.org/10.61989/a6y5fs24Keywords:
statistical learning, language development, late talker, developmental language disorder, speech and language therapy, clinical interventionAbstract
Background. Statistical learning (SL) mechanisms play a crucial role in oral language development. This field of research explores how individuals detect and use statistical regularities in linguistic stimuli to acquire language skills. Understanding these mechanisms provides valuable insights on language development and acquisition difficulties. However, SL and its clinical implications are still largely unknown to speech-language pathologists (SLPs).
Aims. The aim of this literature review is to synthesize current knowledge on SL in oral language development, both typical and atypical, and to explore its possible applications in speech-language therapy. It aims to clarify the fundamental concepts of SL, analyze its role in language trajectories, and identify approaches for integrating these principles into therapeutic practices. Drawing on available scientific evidence, it also discusses methodological limitations and proposes perspectives for strengthening the links between theoretical research and clinic.
Methods. This narrative review, with a heuristic and synthetic aim, was conducted based on a non-systematic but structured examination of the literature. Articles were selected using databases (PsycInfo, ERIC, MEDLINE, MLA, PubMed, and Google Scholar) with predefined keywords. Inclusion criteria focused on the field of study, population, and language. Priority was given to meta-analyses, systematic reviews, and experimental studies, incorporating both recent publications and key reference works.
Results. Studies reveal the effectiveness of SL from early childhood in various aspects of language development. However, individual variations in SL, particularly in children with language difficulties, highlight the complexity of learning mechanisms. The article highlights the theoretical and methodological challenges in measuring and interpreting SL, as well as the practical implications for speech and language pathology intervention, proposing SL-based principles for improving therapeutic effectiveness.
Conclusions. Statistical learning, with its powerful and rapid mechanisms, offers an interesting potential to optimize speech-language therapy interventions, complementing explicit learning. By focusing therapies on input and exploiting AS principles, SLPs can promote effective, effortless learning and generalization. Although further research is needed, current data encourage its integration into clinical practice, while opening the prospect of developing tools for screening and early intervention in various language domains.
References
Aguilar, J. M., Plante, E., & Sandoval, M. (2018). Exemplar variability facilitates retention of word learning by children with specific language impairment. Language, Speech, and Hearing Services in Schools, 49(1), 72‑84. https://doi.org/10.1044/2017_LSHSS-17-0031
Aksayli, N. D., Sala, G., & Gobet, F. (2019). The cognitive and academic benefits of Cogmed: A meta-analysis. Educational Research Review, 27, 229‑243. https://doi.org/10.1016/j.edurev.2019.04.003
Alt, M. (2011). Phonological working memory impairments in children with specific language impairment: Where does the problem lie? Journal of Communication Disorders, 44(2), 173‑185. https://doi.org/10.1016/j.jcomdis.2010.09.003
Alt, M. (2018a). Statistical learning: How it relates to speech-language pathology. Language, Speech, and Hearing Services in Schools, 49(3S), 631‑633. https://doi.org/10.1044/2018_LSHSS-STLT1-18-0040
Alt, M. (2018b). Take home points: How to use statistical learning. Language, Speech, and Hearing Services in Schools, 49(3S), 754‑756. https://doi.org/10.1044/2018_LSHSS-STLT1-18-0046
Alt, M., Mettler, H. M., Erikson, J. A., Figueroa, C. R., Etters-Thomas, S. E., Arizmendi, G. D., & Oglivie, T. (2020). Exploring input parameters in an expressive vocabulary treatment with late talkers. Journal of Speech, Language, and Hearing Research, 63(1), 216‑233. https://doi.org/10.1044/2019_JSLHR-19-00219
Alt, M., Meyers, C., Oglivie, T., Nicholas, K., & Arizmendi, G. (2014). Cross-situational statistically based word learning intervention for late-talking toddlers. Journal of Communication Disorders, 52, 207‑220. https://doi.org/10.1016/j.jcomdis.2014.07.002
Arnon, I. (2020). Do current statistical learning tasks capture stable individual differences in children? An investigation of task reliability across modality. Behavior Research Methods, 52(1), 68‑81. https://doi.org/10.3758/s13428-019-01205-5
Bishop, D. V. M., Snowling, M. J., Thompson, P. A., Greenhalgh, T., & the CATALISE-2 consortium. (2017). Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. Journal of Child Psychology and Psychiatry, 58(10), 1068‑1080. https://doi.org/10.1111/jcpp.12721
Bogaerts, L., Siegelman, N., Christiansen, M. H., & Frost, R. (2022). Is there such a thing as a ‘good statistical learner’? Trends in Cognitive Sciences, 26 (1), 25‑37. https://doi.org/10.1016/j.tics.2021.10.012
Christiansen, M. H. (2019). Implicit statistical learning: A tale of two literatures. Topics in Cognitive Science, 11(3), 468‑481. https://doi.org/10.1111/tops.12332
Collisson, B. A., Graham, S. A., Preston, J. L., Rose, M. S., McDonald, S., & Tough, S. (2016). Risk and protective factors for late talking: An epidemiologic investigation. The Journal of Pediatrics, 172, 168-174. https://doi.org/10.1016/j.jpeds.2016.02.020
Cristia, A., Seidl, A., Junge, C., Soderstrom, M., & Hagoort, P. (2014). Predicting individual variation in language from infant speech perception measures. Child Development, 85 (4), 1330‑1345. https://doi.org/10.1111/cdev.12193
Cruz-Pavía, I., de la, Marino, C., & Gervain, J. (2021). Learning word order: Early beginnings. Trends in Cognitive Sciences, 25(9), 802‑812. https://doi.org/10.1016/j.tics.2021.04.011
Deocampo, J. A., Smith, G. N. L., Kronenberger, W. G., Pisoni, D. B., & Conway, C. M. (2018). The role of statistical learning in understanding and treating spoken language outcomes in deaf children with cochlear implants. Language, Speech, and Hearing Services in Schools, 49(3S), 723‑739. https://doi.org/10.1044/2018_LSHSS-STLT1-17-0138
Desmarais, C., Sylvestre, A., Meyer, F., Bairati, I., & Rouleau, N. (2008). Systematic review of the literature on characteristics of late-talking toddlers. International Journal of Language & Communication Disorders, 43(4), 361‑389. https://doi.org/10.1080/13682820701546854
Eimas, P. D. (1975). Auditory and phonetic coding of the cues for speech: Discrimination of the [r-l] distinction by young infants. Perception & Psychophysics, 18 (5), 341‑347. https://doi.org/10.3758/BF03211210
Ellis, E. M., Gonzalez, M. R., & Deák, G. O. (2014). Visual prediction in infancy: What is the association with later vocabulary? Language Learning and Development, 10(1), 36‑50. https://doi.org/10.1080/15475441.2013.799988
Erickson, L. C., & Thiessen, E. D. (2015). Statistical learning of language: Theory, validity, and predictions of a statistical learning account of language acquisition. Developmental Review, 37, 66‑108. https://doi.org/10.1016/j.dr.2015.05.002
Fey, M. E., Long, S. H., & Finestack, L. H. (2003). Ten principles of grammar facilitation for children with specific language impairments. American Journal of Speech-Language Pathology, 12(1), 3‑15. https://doi.org/10.1044/1058-0360(2003/048)
Finestack, L. H., Ancel, E., Lee, H., Kuchler, K., & Kornelis, M. (2024). Five additional evidence-based principles to facilitate grammar development for children with developmental language disorder. American Journal of Speech-Language Pathology, 33(2), 552‑563. https://doi.org/10.1044/2023_AJSLP-23-00049
Fisher, E. L. (2017). A systematic review and meta-analysis of predictors of expressive-language outcomes among late talkers. Journal of Speech, Language, and Hearing Research, 60(10), 2935‑2948. https://doi.org/10.1044/2017_JSLHR-L-16-0310
Forest, T. A., Schlichting, M. L., Duncan, K. D., & Finn, A. S. (2023). Changes in statistical learning across development. Nature Reviews Psychology, 2(4), 205‑219. https://doi.org/10.1038/s44159-023-00157-0
Friederici, A. D., Mueller, J. L., & Oberecker, R. (2011). Precursors to natural grammar learning: Preliminary evidence from 4-month-old infants. PLoS ONE, 6(3), e17920. https://doi.org/10.1371/journal.pone.0017920
Frost, R., Armstrong, B. C., & Christiansen, M. H. (2019). Statistical learning research: A critical review and possible new directions. Psychological Bulletin, 145 (12), 1128‑1153. https://doi.org/10.1037/bul0000210
Gabriel, A., & Urbain, C. (2012). Implication des mécanismes d’apprentissage de régularités dans l’acquisition du langage chez l’enfant sain et dysphasique. Dans C. Maillart et M.-A. Schelstraete (dir.), Les dysphasies. De l’évaluation à la rééducation (p. 35-56). Elsevier Masson.
Gervain, J., & Mehler, J. (2010). Speech perception and language acquisition in the first year of life. Annual Review of Psychology, 61(1), 191‑218. https://doi.org/10.1146/annurev.psych.093008.100408
Gómez, R. L. (2002). Variability and detection of invariant structure. Psychological Science, 13(5), 431‑436. https://doi.org/10.1111/1467-9280.00476
Gómez, R. L., & Gerken, L. (1999). Artificial grammar learning by 1-year-olds leads to specific and abstract knowledge. Cognition, 70(2), 109‑135. https://doi.org/10.1016/S0010-0277(99)00003-7
Gómez, R. L., & Lakusta, L. (2004). A first step in form-based category abstraction by 12-month-old infants. Developmental Science, 7(5), 567‑580. https://doi.org/10.1111/j.1467-7687.2004.00381.x
Gonzalez-Gomez, N., Poltrock, S., & Nazzi, T. (2013). A “bat” is easier to learn than a “tab”: Effects of relative phonotactic frequency on infant word learning. PLoS ONE, 8(3), e59601. https://doi.org/10.1371/journal.pone.0059601
Graf Estes, K., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to newly segmented words? Statistical segmentation and word learning. Psychological Science, 18(3), 254‑260. https://doi.org/10.1111/j.1467-9280.2007.01885.x
Hall, J., Owen Van Horne, A. J., McGregor, K. K., & Farmer, T. A. (2018). Individual and developmental differences in distributional learning. Language, Speech, and Hearing Services in Schools, 49(3S), 694‑709. https://doi.org/10.1044/2018_LSHSS-STLT1-17-0134
Hoen, M., Golembiowski, M., Guyot, E., Deprez, V., Caplan, D., & Dominey, P. F. (2003). Training with cognitive sequences improves syntactic comprehension in agrammatic aphasics. NeuroReport, 14(3), 495‑499. https://doi.org/10.1097/00001756-200303030-00040
Hsu, H. J., & Bishop, D. V. M. (2010). Grammatical difficulties in children with specific language impairment: Is learning deficient? Human Development, 53(5), 264‑277. https://doi.org/10.1159/000321289
Hsu, H. J., & Bishop, D. V. M. (2014). Sequence-specific procedural learning deficits in children with specific language impairment. Developmental Science, 17(3), 352‑365. https://doi.org/10.1111/desc.12125
Isbilen, E. S., & Christiansen, M. H. (2022). Statistical learning of language: A meta-analysis into 25 years of research. Cognitive Science, 46 (9), e13198. https://doi.org/10.1111/cogs.13198
JBI. (s. d.). Critical appraisal tools. https://jbi.global/critical-appraisal-tools
Johnson, E. K., & Jusczyk, P. W. (2001). Word segmentation by 8-month-olds: When Speech cues count more than statistics. Journal of Memory and Language, 44(4), 548‑567. https://doi.org/10.1006/jmla.2000.2755
Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255(5044), 606‑608. https://doi.org/10.1126/science.1736364
Lammertink, I., Boersma, P., Wijnen, F., & Rispens, J. (2020). Children with developmental language disorder have an auditory verbal statistical learning deficit: Evidence from an online measure. Language Learning, 70(1), 137‑178. https://doi.org/10.1111/lang.12373
Lany, J., & Gómez, R. L. (2008). Twelve-month-old infants benefit from prior experience in statistical learning. Psychological Science, 19(12), 1247‑1252. https://doi.org/10.1111/j.1467-9280.2008.02233.x
Lany, J., & Saffran, J. R. (2010). From statistics to meaning: Infants’ acquisition of lexical categories. Psychological Science, 21(2), 284‑291. https://doi.org/10.1177/0956797609358570
Lany, J., Shoaib, A., Thompson, A., & Graf Estes, K. (2018). Infant statistical-learning ability is related to real-time language processing. Journal of Child Language, 45(2), 368‑391. https://doi.org/10.1017/S0305000917000253
Legendre, G., Barrière, I., Goyet, L., & Nazzi, T. (2010). Comprehension of infrequent subject–verb agreement forms: Evidence from french-learning children. Child Development, 81(6), 1859‑1875. https://doi.org/10.1111/j.1467-8624.2010.01515.x
Leroy, S., Parisse, C., & Maillart, C. (2009). Les difficultés morphosyntaxiques des enfants présentant des troubles spécifiques du langage oral : une approche constructiviste. Rééducation Orthophonique, 238, 21-45. https://hdl.handle.net/2268/24744
MacRoy-Higgins, M., Schwartz, R. G., Shafer, V. L., & Marton, K. (2013). Influence of phonotactic probability/neighbourhood density on lexical learning in late talkers. International Journal of Language & Communication Disorders, 48(2), 188‑199. https://doi.org/10.1111/j.1460-6984.2012.00198.x
Morgan, J. L., & Saffran, J. R. (1995). Emerging integration of sequential and suprasegmental information in preverbal speech segmentation. Child Development, 66(4), 911‑936. https://doi.org/10.1111/j.1467-8624.1995.tb00913.x
Moyle, J., Stokes, S. F., & Klee, T. (2011). Early language delay and specific language impairment. Developmental Disabilities Research Reviews, 17(2), 160‑169. https://doi.org/10.1002/ddrr.1110
Nazzi, T., Barrière, I., Goyet, L., Kresh, S., & Legendre, G. (2011). Tracking irregular morphophonological dependencies in natural language: Evidence from the acquisition of subject-verb agreement in French. Cognition, 120(1), 119‑135. https://doi.org/10.1016/j.cognition.2011.03.004
Nazzi, T., Bertoncini, J., & Bijeljac-Babic, R. (2009). A perceptual equivalent of the labial-coronal effect in the first year of life. The Journal of the Acoustical Society of America, 126(3), 1440‑1446. https://doi.org/10.1121/1.3158931
Onnis, L., Lou-Magnuson, M., Yun, H., & Thiessen, E. (2015). Is statistical learning trainable? Dans D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings et P. P. Maglio (dir.), Proceedings of the 37th annual meeting of the Cognitive Science Society (p. 1781‑1786). Cognitive Science Society. https://escholarship.org/uc/item/93z978wt
Owen Van Horne, A. J., Curran, M., Larson, C., & Fey, M. E. (2018). Effects of a complexity-based approach on generalization of past tense – ed and related morphemes. Language, Speech, and Hearing Services in Schools, 49(3S), 681‑693. https://doi.org/10.1044/2018_LSHSS-STLT1-17-0142
Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10 (5), 233‑238. https://doi.org/10.1016/j.tics.2006.03.006
Plante, E., & Gómez, R. L. (2018). Learning without trying: The clinical relevance of statistical learning. Language, Speech, and Hearing Services in Schools, 49(3S), 710‑722. https://doi.org/10.1044/2018_LSHSS-STLT1-17-0131
Plante, E., Ogilvie, T., Vance, R., Aguilar, J. M., Dailey, N. S., Meyers, C., Lieser, A. M., & Burton, R. (2014). Variability in the language input to children enhances learning in a treatment context. American Journal of Speech-Language Pathology, 23(4), 530‑545. https://doi.org/10.1044/2014_AJSLP-13-0038
Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6(6), 855‑863. https://doi.org/10.1016/S0022-5371(67)80149-X
Rescorla, L. (2011). Late talkers: Do good predictors of outcome exist? Developmental Disabilities Research Reviews, 17(2), 141‑150. https://doi.org/10.1002/ddrr.1108
Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. WIREs Cognitive Science, 1 (6), 906‑914. https://doi.org/10.1002/wcs.78
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926‑1928. https://doi.org/10.1126/science.274.5294.1926
Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69(1), 181‑203. https://doi.org/10.1146/annurev-psych-122216-011805
Saracci, C., Mahamat, M., & Jacquerioz, F. (2019). Comment rédiger un article scientifique de type revue narrative de la littérature ? Revue Médicale Suisse, 15 (664), 1694‑1698. https://www.revmed.ch/revue-medicale-suisse/2019/revue-medicale-suisse-664/comment-rediger-un-article-scientifique-de-type-revue-narrative-de-la-litterature
Shufaniya, A., & Arnon, I. (2018). Statistical learning is not age-invariant during childhood: Performance improves with age across modality. Cognitive Science, 42(8), 3100‑3115. https://doi.org/10.1111/cogs.12692
Siegelman, N., Bogaerts, L., Christiansen, M. H., & Frost, R. (2017). Towards a theory of individual differences in statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1711), 20160059. https://doi.org/10.1098/rstb.2016.0059
Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring individual differences in statistical learning: Current pitfalls and possible solutions. Behavior Research Methods, 49(2), 418‑432. https://doi.org/10.3758/s13428-016-0719-z
Smith, G. (2017). The association between structured sequence processing and grammatical language processing: The neurocognitive mechanisms and the potential to enhance them. [Thèse de doctorat, Georgia State University]. Psychology Dissertations. https://doi.org/10.57709/11104349
Smith, G. N. L., Conway, C. M., Bauernschmidt, A., & Pisoni, D. B. (2015). Can we improve structured sequence processing? Exploring the direct and indirect effects of computerized training using a mediational model. PLOS ONE, 10(5), e0127148. https://doi.org/10.1371/journal.pone.0127148
Stokes, S. F. (2010). Neighborhood density and word frequency predict vocabulary size in toddlers. Journal of Speech, Language, and Hearing Research, 53(3), 670‑683. https://doi.org/10.1044/1092-4388(2009/08-0254)
Stokes, S. F., Kern, S., & Santos, C. D. (2012). Extended statistical learning as an account for slow vocabulary growth. Journal of Child Language, 39(1), 105‑129. https://doi.org/10.1017/S0305000911000031
Storkel, H. L. (2009). Developmental differences in the effects of phonological, lexical and semantic variables on word learning by infants. Journal of Child Language, 36(2), 291‑321. https://doi.org/10.1017/S030500090800891X
Sylvestre, A., Desmarais, C., Meyer, F., Bairati, I., & Leblond, J. (2018). Prediction of the outcome of children who had a language delay at age 2 when they are aged 4: Still a challenge. International Journal of Speech-Language Pathology, 20(7), 731‑744. https://doi.org/10.1080/17549507.2017.1355411
Thiessen, E. D. (2017). What’s statistical about learning? Insights from modelling statistical learning as a set of memory processes. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1711), 20160056. https://doi.org/10.1098/rstb.2016.0056
Thiessen, E. D., & Saffran, J. R. (2003). When cues collide: Use of stress and statistical cues to word boundaries by 7- to 9-month-old infants. Developmental Psychology, 39(4), 706‑716. https://doi.org/10.1037/0012-1649.39.4.706
Uddén, J., Ingvar, M., Hagoort, P., & Petersson, K. M. (2017). Broca’s region: A causal role in implicit processing of grammars with crossed non-adjacent dependencies. Cognition, 164, 188‑198. https://doi.org/10.1016/j.cognition.2017.03.010
Ullman, M. T., Earle, F. S., Walenski, M., & Janacsek, K. (2020). The neurocognition of developmental disorders of language. Annual Review of Psychology, 71(1), 389‑417. https://doi.org/10.1146/annurev-psych-122216-011555
Ullman, M. T., & Pierpont, E. I. (2005). Specific language impairment is not specific to language: The procedural deficit hypothesis. Cortex, 41(3), 399‑433. https://doi.org/10.1016/S0010-9452(08)70276-4
Unger, L., Vales, C., & Fisher, A. V. (2020). The role of co-occurrence statistics in developing semantic knowledge. Cognitive Science, 44(9), e12894. https://doi.org/10.1111/cogs.12894
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7(1), 49‑63. https://doi.org/10.1016/S0163-6383(84)80022-3
West, G., Melby-Lervåg, M., & Hulme, C. (2021). Is a procedural learning deficit a causal risk factor for developmental language disorder or dyslexia? A meta-analytic review. Developmental Psychology, 57(5), 749‑770. https://doi.org/10.1037/dev0001172
Yim, D., & Yang, Y. (2021). Can we enhance statistical learning? Exploring statistical learning improvement in children with vocabulary delay. Communication Sciences & Disorders, 26(3), 558‑567. https://doi.org/10.12963/csd.21804
Zhang, Z., Xu, Q., & Joshi, R. M. (2021). A meta-analysis on the effectiveness of intervention in children with primary speech and language delays/disorders: Focusing on China and the United States. Clinical Psychology & Psychotherapy, 28(3), 585‑605. https://doi.org/10.1002/cpp.2522
Downloads
Published
License
Copyright (c) 2025 Julie Bodard

This work is licensed under a Creative Commons Attribution 4.0 International License.

